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Photosynthetic UV stress tolerance of the
Antarctic snow alga Chlorella sp. modified
by enhanced temperature?
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Abstract

Background: Photosynthetic characteristics and the effect of UV radiation and elevated temperature measured
were studied in Chlorella sp. isolated from a snow microalgal community at King George Island, Maritime Antarctica
through the chlorophyll florescence (rapid light curves and maximum quantum yield, respectively). The
environmental context was monitored through measurements of spectral depth profiles of solar radiation (down to
40 cm) in the snowpack as well as a through continuous recording of temperature and PAR using dataloggers
located at different depths (0–30 cm) within the snow column.

Results: The photochemistry of Chlorella sp. was affected by UV radiation in a 12-h laboratory exposure under all
studied temperatures (5, 10, 15, 20 °C): the algae exposed to PAR + UV-A radiation were inhibited by 5.8 % whilst PAR
+ UV-A + UV-B radiation decreased Fv/Fm by 15.8 %. In both treatments the 12-h recovery after UV exposure was
almost complete (80–100 %). Electron transport based P-I curve parameters maximal electron transport rate (ETRmax),
photosynthetic efficiency (α) and the saturating irradiance (Ek) no varied in response to different temperatures.

Conclusions: Results revealed that Chlorella sp. not only shows high photosynthetic efficiency at ambient conditions,
but also exhibits tolerance to solar radiation under higher temperatures and possessing a capacity for recovery after
inhibition of photosynthesis by UV radiation.
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Background
The Antarctic cryosphere represents a hostile habitat for
life, characterized by extreme temperature conditions vary-
ing abruptly between freezing and melting points, high
levels of solar radiation, especially harmful wavelengths of
ultraviolet (UV) radiation, nutrient limitation, changes in
pH and osmotic stress [1, 2]. The physico-chemical proper-
ties of melting snow allow psychrophilic algae to grow in li-
quid interstices, where the temperature is just above the
freezing point [3–5]. In polar snowfields, the biomass of
snow algae can become very important and due to their
capacity to fix and store carbon they play a key role as pri-
mary producers in the biogeochemical cycles in Arctic and

Antarctic regions [6]. In coastal areas of West Antarctic
Peninsula and adjacent islands, an eco-region denominated
Maritime Antarctica, processes occurring in glacier and
snow ecosystems are closely interrelated with those of the
marine realm. Melting of massive snow/ice accumulations
and consequent run-off have strong impact on the physical
and biological processes of near-shore pelagic and benthic
communities [7, 8].

Due to that snow algae inhabit ecosystems highly sen-
sitive and responsive to shifts in environmental condi-
tions (e.g. temperature, light and precipitation), they can
be regarded as excellent model organisms to examine
the impact of climate change. Warming in several re-
gions has been related with lower precipitation as snow,
earlier runoff and hence, a shortened period of snow
permanence [9, 10]. Under these scenarios, snow algae
and their associated microbial community have to adapt
to new regimes of melting and freezing [11], underlining
not well-understood physiological adaptations.
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Unlike alpine and other continental snowfields, coastal
snow packs located in Maritime Antarctica are tentatively
eutrophic environments, mostly due to the presence of
seabird and mammal colonies [12]. Thus, for this habitat,
light and temperature remain as the major stressors for
snow algae. However, the question how these factors,
alone or in combination, impact snow communities in
Antarctic coastal snowfields has been poorly addressed.
Data from alpine snow algae indicate that light, especially
due to scattering, can be elevated and thus, algae have to
cope with irradiation stress, caused by Photosynthetically
Active Radiation (PAR) and Ultraviolet (UV) in conditions
of low temperatures. Especially during the sensitive motile
green phase in their life cycle, microalgae are sensitive ex-
cess PAR and UV [13], which affect different molecules
and processes (e.g. DNA, photosynthetic apparatus, lipid
membranes, etc.; reviewed by [14]) and also cell motility
[15]. However, some snow algae downregulate their
photochemical processes via a series of dissipative mecha-
nisms such as the violaxanthin cycle, synthesis and accu-
mulation of astaxanthin, turnover of D1 proteins, antenna
quenching, cold induced transcripts and cold-adapted
proteins, etc. which operate at temperatures close to 0 °C
[12, 16, 17]. The question whether these mechanisms
operate efficiently at higher temperatures remains open.
Chlorella is a unicellular green alga, which has a single

chloroplast, rigid cell wall and lacks flagella [18]. The
genus is globally distributed including the Antarctic
[19, 20]. In general this microalga inhabits soils and
other ice-free environments, however, can also be found
in snow packs during the summer melting season [21].
Teoh et al. [22] analysed the growth rates, biochemical
composition and profile of fatty acids of six Antarctic
strains, of which algae of the class Trebouxiophyceae, in-
cluding Chlorella, presented the greatest growth rates at
enhanced temperature of 20 °C. Significant alterations in
the morphology and activity of the chloroplasts in re-
sponse to enhanced UV-B radiation have been reported
for this genus [23]. Due to that gradients in solar radiation
along the snowpack can impose not only considerable
stress as a consequence of detrimental and photoinhibi-
tory levels of UV radiation and PAR, but also can result in
light limitation for photosynthesis at lower snow depths,
one could argue that an acclimation process or physio-
logical flexibility are important to ensure primary produc-
tion. Up to now, most of the studies on snow algal
photobiology have been conducted in ubiquitous flagellate
green algal genera such as Chlamydomonas, or Chloromo-
nas, which show an ability to actively migrate along the
snow pack column and thus “regulate” their light environ-
ment [3, 24–26]. In a recent study was demonstrated that
Antarctic strains of Chlorella are more sensitive to UV ra-
diation under elevated temperature than their counter-
parts from temperate or tropical regions [27]. Thus, in the

present study the question whether photosynthetic char-
acteristics of non-motile Chlorella sp. isolated from snow
fields in Maritime Antarctica (King George Island) match
the light and temperature conditions prevailing at differ-
ent snow depths was examined. Moreover, the ability of
Chlorella to endure environmental stress was assessed in
a series of controlled exposures to UV radiation and ele-
vated temperature. The prediction that elevated tempera-
tures will enhance the detrimental effects of UV radiation
was tested.

Methods
Collection and isolation of snow microalgae
During February 2015, snow samples with evident pres-
ence of snow algae (green coloration) were collected at
depths below 10 cm (vegetative cells) at Elefantera beach,
Fildes Peninsula King George Island (62°11'57,07'' S; 58°
59'42,48''W). Samples were transported to the laboratory
in the station “Base Profesor Julio Escudero” where they
were cultured in bottles (TR6000, TrueLine, USA) using
“Snow Algae” media standardized according to protocols
defined by the culture Collection of algae of The Univer-
sity of Texas at Austin (UTEX). The samples were kept at
a temperature of 5 °C with a photoperiod of 18:6 D:L, at
irradiance of 4.7 μmol m-2 s-1. The samples were trans-
ferred to the Photobiology Laboratory of the Universidad
Austral de Chile, in Valdivia, where Chlorella sp. was iso-
lated by successive dilutions and repeated subcultures
[28]. The clonal stock culture (now coded as ChlaP7MSA)
was kept at a temperature of 5 °C under a 12:12 L:D light
regime at 4.7 μmol m-2 s-1. These culture conditions were
maintained to achieve the exponential growth phase,
determined through daily cell counts, with an optical
microscope using a Neubauer chamber. Cultures were
photographed under Olympus BX51TF epifluorescence
microscope (model CKX41SF; Olympus, Japan) equipped
with a digital camera (QImaging Micro Plublisher 5.0
RTV; software QCapture pro) under bright-field as well as
visualizing chlorophyll as orange-red autofluorescence ac-
cording to the methodology described by Huovinen and
Gómez [29] with the U-MWBV2 mirror unit (Olympus)
(excitation 400–440 nm, detection of emission from
475 nm) (Fig. 1). Experiments were performed with the
clonal stock culture in the exponential growth phase.

Measurement of solar radiation and temperature in the
snowpack
In situ spectral irradiance was measured during a sunny
day (February 13, 2015 at noon) using an underwater
hyperspectral radiometer (RAMSES-ACC2-UV–Vis,
TriOs Optical Sensors, Rastede, Germany) through the
snow column down to a depth of 40 cm (8 and 19 mea-
surements per depth). According to the President
Eduardo Frei Montalva Metereological Station’s records,
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this day had 10 % cloud cover, and moderate breeze
from the Northwest at 3 m/s. At the same time, a set of
HOBO UA-002-64 dataloggers (Onset Computer Cor-
poration, Bourne, MA, USA) was programmed to record
temperature and solar irradiance (PAR) at 0, 10, 20 and
30 cm depth in the snow column every 5 min for 15 days
during the study period.

Exposures to temperature and UV radiation
Samples from Chlorella sp. clonal culture (3500 cell/
ml, exponential growth phase) were put in cell cul-
ture plates without aeration and exposed to PAR,
PAR + UV-A and PAR + UV-A + UV-B radiation treat-
ments for 12 h under a 4 temperature conditions (5,
10, 15 and 20 °C), followed by a 12-h recovery period
in dim light without UV. A thermoregulated water-
bath (Digit-Cool, Selecta, Spain) was used to set the
different temperatures, whilst illumination was pro-
vided by three types of fluorescent lamps: UV-B-313
emitting UV-B; UV-A-340 emitting UV-A (Q-Panel,
USA) and and TL-D 36 W/54-765 emitting PAR
(Philips, Thailand). Three UV treatments were

obtained by covering the cell culture with different
cut-off filters: Ultraphan 295 (Digefra, Germany) for PAR
+ UV-A + UV-B condition, Ultraphan 320 for PAR + UV-
A, and Ultraphan 400, for PAR treatment. The experimen-
tal UV irradiances were set at 0.25 W m-2 for UV-B
and 0.95 W m-2 for UV-A, whilst the PAR irradiance
was of 10 μmol m-2 s-1. Total radiation dose during
the 12 h exposure was 10.8 kJ m-2 for UV-B and
40.5 kJ m-2 for UV-A. The radiation levels were mea-
sured using the RAMSES-ACC2-UV–Vis hyperspec-
tral radiometer.

Chlorophyll fluorescence measurements
The photosynthetic performance of Chlorella was mea-
sured before and after exposure to different tempera-
tures and radiation treatments using an amplitude
modulation fluorometer (Water PAM, Walz, Effeltrich,
Germany). After a 12-h exposure, as well as after a 12-h
recovery period, the samples were kept for 10 min in
darkness and the maximum quantum yield (Fv/Fm) was
subsequently measured.

a b

c d

e f

Fig. 1 Field collection samples and light microscopy of dividing cells of Chlorella sp. (exponential growth phase). Sampling (a), thawed samples
on darkness (b). Living cells were observed under bright field (c) and blue-violet light showing red autofluorescence of chlorophyll (d). The
photograph shows two cells after division (e). Autospore maturing phase with four daughter cells (f-a) and release of cells (f-b). Scale = 5 μm
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The P-I curves were based on electron transport rate
vs. irradiance (ETR-I) curves by exposing the Chlorella
samples to a gradient of PAR irradiances (0 to 446 μmol
photon m–2 s–1) under the four temperatures described
above. The relative electron transport rate (rETR) was
estimated relating the effective quantum yield (ΦPSII)
and the intensity of actinic radiation [30], as follows:

rETR ¼ ΦPSII � EPAR � 0:5

where EPAR is the incident actinic irradiance. The 0.5
factor comes from the assumption that 4 of the 8 elec-
trons required to assimilate one CO2 molecule are pro-
vided by the PSII. The ETR parameters were defined
through a modified non-linear function proposed by
Jassby and Platt [31]:

ETR ¼ rETRmax � tanh α � E=rETRmaxð Þ
where rETRmax is the maximum electron transport rate,
tanh is the hyperbolic tangent function, α is the effi-
ciency of electron transport (initial slope of the rETR vs.
irradiance curves), and E is the incident irradiance. The
saturation irradiance for electron transport (Ek) was cal-
culated as the intersection between α and the rETRmax

values.
The effect of UV radiation and temperature was

assessed by comparing the inhibition of Fv/Fm, that was
calculated as the percentage of decrease between the
values measured in PAR + UV-A and PAR + UV-A + UV-
B and values measured in samples exposed only to PAR.
Likewise, the recovery was estimated by comparing the
Fv/Fm values of the samples treated with UV radiation
with those treated only with PAR.

Statistical analysis
The variation in the incident solar radiation of UV-B,
UV-A and PAR at different depths (0, 10, 20, 30, 40 cm)
was compared using nonparametric analysis of variance
(Kruskal-Wallis). The variation in the responses of the
photosynthetic parameters to the UV radiation exposure
and recovery at different temperatures, were compared
through a two-way variance analysis (ANOVA). Post-
hoc comparisons were carried out using Tukey HSD
test. In both analyses, the ANOVA assumptions (variance
homogeneity, normal distribution) were examined
through the Levene’s and Kolmogorov-Smirnov tests,
respectively.

Results
In situ solar irradiance and temperature
The weather conditions at King George Island during
the study period was characterized by cloudy days. In
this line, maximal PAR values normally did not exceed
400 μmol m–2 s–1 (Table 1). For a sunny day (10 % could

cover), the daily course of solar irradiation and
temperature measured at 0, 10, 20 and 30 cm depths in
the snow column is shown in Fig. 2. The surface irradi-
ance reached values of 1300 μmol m–2 s–1 around mid-
day and was attenuated by 70 % at 10 cm (decreasing to
less than 350 μmol m–2 s–1). This value matches the
light requirements for saturation of photosynthesis (Ek)
measured for Chlorella sp. (see Table 1). The number of
hours at which algae remain under saturating irradiance
(Hsat) at the surface was close to 12-13 h, decreasing
with increasing depth (Fig. 2a). Temperature in the snow
pack varied within the ranges of minimum and max-
imum air temperature registered by the Presidente
Eduardo Frei Meteorological Station (Fig. 2b). Maximal
temperature at 10 cm depth was close to 4 °C with a
positive correlation between the solar irradiation and the
temperature at each depth (r > 0.9; p < 0.05). Under
10 cm, temperature was close to 2 °C and varied less in
the course of the day. The spectral profiles of UV radi-
ation and PAR indicated strong decreases of UV-A and
UV-B below 10 cm depth (Fig. 2c; Table 2).

Photosynthetic responses
The ETR-I curves indicated lower photosynthesis in
samples incubated to 5 °C compared to higher tempera-
tures (Fig. 3, Table 3). Mean values of ETRmax ranged
between 50.6 at 5 °C and 71.6 at 10 °C. Similarly, the
light requirements for photosynthesis (Ek) were lower in
algae incubated to 5 °C (204.7 μmol e- m-2 s-1) compared
to the other temperatures where Ek varied between 259

Table 1 Maximum Photosynthetically Active Radiation (PAR)
levels, measured in snow column, during the study period

Depth (cm) 0 10 20 30

Date PAR (μmol photon m-2 s-1)

3-Feb-2015 357 134 27 13

4-Feb-2015 281 54 14 7

5-Feb-2015 740 73 18 10

6-Feb-2015 311 35 9 5

7-Feb-2015 212 50 11 5

8-Feb-2015 459 191 61 33

9-Feb-2015 198 191 121 41

10-Feb-2015 560 54 14 8

11-Feb-2015 510 191 38 18

12-Feb-2015 459 96 54 25

13-Feb-2015 1276 331 122 60

14-Feb-2015 342 60 15 8

15-Feb-2015 459 45 12 6

16-Feb-2015 255 49 12 6

17-Feb-2015 383 134 49 27

18-Feb-2015 153 121 89 30
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Fig. 2 February 13 daily cycle of PAR (a), temperature (b) and spectral light penetration (c) in the snow column at King George Island, Maritime
Antarctica. The dotted line (a) indicates saturating irradiance level for photosynthesis in Chlorella sp. (Ek = 276 μmol photons m–2 s–1). The
maximum (4,3 °C) and minimum (-1,4 °C) air temperature is presented (b)
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and 276 μmol e- m-2 s-1 (Table 3). The initial slope
(α) did not varied between temperature treatments
(Table 3).

The exposure to UV radiation caused Fv/Fm inhibition
in Chlorella sp. (Fig. 4; p < 0.001; ANOVA; Table 4;).
PAR + UV-A radiation was responsible for 5.8 % inhib-
ition, but when UV-B was added (PAR + UV-A + UV-B)
Fv/Fm decreased by 15.8 %. The temperature factor did
not promote Fv/Fm differences. After the period of dark-
ness, the Fv/Fm recovery varied between 80 to 100 %,
with an increase in the recovery level associated to an
increase in temperature (Fig. 4; p < 0.001; ANOVA;
Table 4).

Discussion
Photosynthetic characteristics and the light environment
Our results show that at the sampling location in
Fildes Peninsula, 10 cm below the snow surface

irradiance does not exceed 350 μmol m–2 s–1, which
matches well the average light required for saturation
of photosynthesis determined in this study for Chlor-
ella sp. (276 μmol m–2 s–1). Using the number of
hours per day at which algae are exposed to saturat-
ing irradiances (the so-called Hsat), one can argue that
photosynthesis of these microalga is not limited by at
least for 10 h at a depth of 10 cm and 12–13 h at
the surface of the snowpack, during sunny conditions.
In general, these light requirements are in the lower
ranges described for Chlamydomonas from Giant
Mountains, Czech Republic [25] and clearly lower than
light requirements of 523–826 μmol photons m–2 s–1

measured in an Arctic population of Chlamydomonas
nivalis [32]. In contrast to Chlorella sp., the high Ek values
determined in Chlamydomonas are indicative of that these
algae are exposed to photoinhibitory levels of PAR, which
could have negative effects on photosynthesis. In fact, it is
well documented in this genus that excess of irradiation
results in the formation of robust, red pigmented cysts
[33–35], which are also mostly located at the surface of
the snowpack [36]. Although we did not perform in situ
measurements of photosynthesis, the high levels of solar
radiation recorded during midday in a sunny day at Fildes
Peninsula (exceeding 1200 μmol photons m–2 s–1) suggest
that Chlorella can suffer considerable photoinhibition of
photosynthesis, at least when exposed to high irradiances
close to the snow surface. This is exacerbated by snow
reflecting most of the long wavelength radiation [37], dir-
ectly affecting the light extinction patterns, mostly due to
the changes in phase transitions of water [38]. It must be
emphasized that in our laboratory study, levels of PAR
used in the incubations were considerably lower than
current irradiances measured in the field (PAR was main-
tained low to avoid photoinhibition and mask UV effects)
and thus we cannot evaluate the impact of high PAR on
the physiology of this alga.

Effects of temperature on UV stress tolerance
Due to its ubiquitous character, many species of Chlor-
ella have been described as eurythermal microorgan-
isms, which can inhabit all type of freshwater and soil
environments [22]. This capacity to cope with different

Table 2 Levels of solar UV radiation (W m-2) in the
snow column at different depths measured using a RAMSES
hyperspectral radiometer. Values correspond to 8-19
measurements per depth. The spectral characteristics are
shown in Fig. 2c

UV-A UV-B PAR

Depth (cm) Mean ± S.D.

0 15.8 ± 0.97 0.35 ± 0.01 163.7 ± 14.72

10 1.31 ± 0.33 0.018 ± 0.00 19.0 ± 4.12

20 0.69 ± 0.07 0.007 ± 0.00 11.5 ± 1.55

30 0.30 ± 0.01 0.002 ± 0.00 6.5 ± 0.34

40 0.42 ± 0.06 0.003 ± 0.00 7.6 ± 1.72
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Fig. 3 ETR-I curves for Chlorella sp. exposed for 12 h to PAR
treatments under a temperature gradient of 5, 10, 15 and 20 °C

Table 3 Results on photosynthetic parameters measured using
amplitude modulation fluorometer (Water PAM)

ETRmax Ek α

Means SD Means SD Means SD

12-h Exposure

5 °C 50.63 2.30 204.74 29.43 0.27 0.02

10 °C 71.64 2.40 276.29 24.86 0.30 0.02

15 °C 65.86 0.60 259.18 11.93 0.29 0.00

20 °C 66.87 2.10 261.12 63.66 0.30 0.02
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thermal conditions has also been recognized for isolated
strains of Chlorella sp. from Antarctic [19]. In our study,
Chlorella sp. was visually more abundant below 10 cm
where temperatures along the day ranged between 0 and
3.8 °C. Apparently, in this environment, algae find a
more stable microhabitat with lesser temperature varia-
tions [39]. This allows us to argue that excess UV radi-
ation at strata close to the surface would be the key
factor limiting the proliferation of Chlorella sp. at
depths < 10 cm. In fact, our results indicate that Chlor-
ella sp. is sensitive to UV radiation but not to
temperature. Regarding the levels of UV radiation re-
corded at depths below 10 cm (0.01 W m-2 for UV-B
and 1.3 W m-2 for UV-A), it could be argued that micro-
algae were not exposed to detrimental UV conditions.
For example, in situ measurements carried out in the
snowfields of the Rocky Mountains, Wyoming, with

Fig. 4 Inhibition of maximum quantum yield of fluorescence (Fv/Fm) after a 12-h UV exposure and a 12 h recovery period in comparison to PAR
treatment at different temperatures. Average values ± S.D. Different letters indicate significant differences (ANOVA, p < 0.05)

Table 4 Effects of the experimental treatments on maximum
quantum yield (Fv/Fm) analysed by two-way ANOVA

Fv/Fm

Source d.f. MS F P

12-h Exposure

Temperature 3 33.00 2.01 0.153

Radiation 1 604.51 36.87 <0.001

Temperature x Radiation 3 11.03 0.67 0.581

12-h Recovery

Temperature 3 131.18 10.95 <0.001

Radiation 1 412.87 34.47 <0.001

Temperature x Radiation 3 21.04 1.76 0.196
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abundant populations of Chlamydomonas nivalis indi-
cated that maximal transmittance of UV-B radiation was
close to 4 cm [24].

The inhibition of the maximum quantum yield (Fv/Fm)
of Chlorella sp. was wavelength dependent. Under PAR
+ UV-A + UV-B treatment, fluorescence values de-
creased by 15 % after exposures of 5 to 20 °C. For the
PAR + UV-A treatment, inhibition of Fv/Fm did not ex-
ceed 7 %. However, the recovery of the samples exposed
to PAR + UV-A was in the range of 90–100 % relative to
PAR control, while recovery in algae exposed to PAR +
UV-A + UV-B varied between 80 and 95 %. These results
highlight the tolerance of Chlorella to the UV exposure,
at least for periods close to 12 h and high UV-B:UV-A
ratio. Studies carried out with UMACC 237, another
Antarctic Chlorella strain, revealed a higher tolerance to
UV-B compared to strains of the same genus isolated
from temperate and tropical regions [40]. Apparently,
exposure to enhanced UV radiation in snow living popu-
lations of Chlorella stimulates the activity of antioxidant
enzymes, such as catalases and superoxide dismutase
[23, 41] or enhance the synthesis of protective com-
pounds like secondary carotenoids (e.g. in Chlorella
zofingiensis) or mycosporine-like amino acids (MAAs)
[14]. However, when algae were exposed to higher tem-
peratures, repair processes in Antarctic strains increase
significantly [27]. This could be a confirmation that ele-
vated temperatures can ameliorate the detrimental im-
pact of UV radiation as has been reported in Antarctic
macroalgae [42].

Implications for snow algal ecology in scenarios of
climate change
Recent reviews dealing with the ecology of snow algae and
in general of extreme cold-adapted organisms [2, 21]
emphasize the urgent need for physiological and mo-
lecular studies that allow identifying the adaptive and
acclimative strategies that snow algae exhibit in re-
sponse to environmental factors beyond their tolerance
threshold. Based on a scenario of extended melt pe-
riods in maritime Antarctica [43] with concomitant
higher impact of elevated temperature and UV radi-
ation, the examination of stress tolerance mechanisms
is essential to understand and predict near-future im-
pacts of climate change especially in polar regions
where snowfields and their algal communities have an
important role on the biogeochemical fluxes [44].
Snow algae are probably the most sensitive biological
indicators of present and future scenarios of regional
warming and meltdown in vast sectors of Antarctica,
especially at ecologically relevant (seasonal and inter-
annual) scales. In addition to their important role as
primary producers, polar extremophiles are involved in
exchange of reactive gases with the atmosphere (e.g.

N2, CO2, dimethyl sulfoxide, etc.) [2, 45] and in snow-
fields in the maritime Antarctica, they play important
subsidiary roles through the melting runoff, food web
and degradation products [7, 8]. The impact that these
processes will have on in the biogeochemical cycles of
the whole coastal system in this region is unknown and
prompt for further research.

Conclusions
Overall, our findings revealed that Chlorella sp. isolated
from a snow microalgal community in maritime Antarc-
tic not only shows high photosynthetic efficiency at am-
bient conditions, but also exhibits tolerance to solar
radiation under higher temperatures. Avoiding the highly
UV exposed snow surface and possessing a capacity for
recovery after inhibition of photosynthesis by UV radi-
ation appear as two important strategies of Chlorella sp.
in these ecosystem . However, it remains open how these
algae will endure the future Antarctic summer, charac-
terized by warmer temperatures and less snow, in which
they will exposed to high solar radiation.
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